

### **SESSIONS:**

- SUSTAINABILITY
- HEALTH & SAFETY
- DECARBONIZATION
- TECHNICAL SOLUTIONS
- DIGITAL ENVIRONMENT
- POLICIES & LEGISLATION
- **ENERGY EFFICIENCY FIRST**
- RESILIENCE TO CLIMATE CRISIS

**GOLD SPONSOR SPONSORS** 

































































Future of Sustainable Products between Regulations and Market Surveillance



- Ali NOUR EDDINE, DR-Eng.
- Technical Manager
- Eurovent Certita Certification



### Investing in Energy Efficient HVAC

#### **Renovation:**

- ➤ Europe invests EUR 85-90 billion annually in building energy efficiency measures, around 40% of the world-wide market for energy efficiency retrofits
- ➤ Europe would need to invest EUR 275 billion of additional investments in buildings annually to meet its climate targets

#### **Construction:**

➤ EU27 invested EUR 700 billion in construction of buildings in 2019, 40% residential and 60% non-residential.



22-23 NOVEMBER 2024

ENERGY IN BUILDINGS

EMEA 2024

### Where should we invest?

- ➤ A typical HVAC account is generally responsible for approx. 40% (up to 70% in some regions) of total building energy consumption.
- Mechanical Ventilation is a considerable part of this consumption
- ➤ Indispensable in new and refurbished airtight buildings to ensure IAQ
- ➤ Air handling units have a major impact on energy consumption Air transport and heat recovery





# Solution: Incentive and/or Regulation



#### **International Framework**

### √ The 2021 International Energy Conservation Code

The IECC also asks for new HVAC cooling performance standards. Equipment must now surpass the minimum cooling and heating rejection efficiency requirements by 5%-10%.

### ✓ European Union Directive (EU) 2009/125/CE

also commonly known as Ecodesign, defines minimal requirements for energy-related products. It's objective is the reduction of energy consumption and CO2- emission rates as well as an increase in the overall share of renewable energies

# Solution: Incentive and/or Regulation



| Number | Country        |   | Coal boilers |   |   | Oil boilers, | guneusanug |   | Gas bollers, | condensating |   | Hybrid Heat Pumps |   |   | Air/Air Heat Pumps |   |   | Air/Water Heat Pumps |   |   | water/ water + Ground | Source near rumps |   | Biomass |   |   | Solar Thermal |   |
|--------|----------------|---|--------------|---|---|--------------|------------|---|--------------|--------------|---|-------------------|---|---|--------------------|---|---|----------------------|---|---|-----------------------|-------------------|---|---------|---|---|---------------|---|
|        |                | S | Т            | L | S | Т            | L          | S | Т            | L            | S | Т                 | L | S | Т                  | L | S | Т                    | L | S | Т                     | L                 | S | Т       | L | S | Т             | L |
| 1      | Austria        |   |              |   |   |              |            | * |              | *            |   |                   |   | х |                    |   | x |                      |   | х |                       |                   | x |         |   | х |               |   |
| 2      | Belgium        |   | х            |   | L | х            | *          | х | х            | *            | х | х                 |   | х | х                  | * | х | х                    | * | х | х                     | *                 | х | х       | * | x | х             | * |
| 3      | Bulgaria       |   |              |   |   |              |            |   |              | х            |   |                   | х |   |                    | х |   |                      | х |   |                       | х                 | * | х       | х |   | х             | х |
| 4      |                |   |              |   |   |              |            |   |              |              |   |                   |   |   |                    |   |   |                      |   |   |                       |                   |   |         |   |   |               |   |
| 5      | Cyprus         |   |              |   |   |              |            | х |              |              | х |                   |   | х |                    |   | x |                      |   | x |                       |                   | x |         |   | x |               |   |
| 6      | Czechia        |   |              |   |   |              |            | х |              |              |   |                   |   | х |                    |   | x |                      |   | x |                       |                   | x |         |   | x |               |   |
| 7      | Denmark        |   |              |   |   |              |            |   | х            |              |   | х                 |   |   | х                  |   | x | х                    |   | x | х                     |                   |   |         |   |   | х             |   |
| 8      | Estonia        |   |              |   |   |              |            |   |              |              |   |                   |   |   |                    |   |   |                      |   |   |                       |                   |   |         |   |   |               |   |
| 9      | Finland        |   |              |   |   |              |            |   | х            |              |   | х                 |   |   | х                  |   | × | х                    |   | x | х                     |                   | x | х       |   |   | х             |   |
| 10     | France         |   |              |   | х | х            |            | х | х            | х            | х | х                 | х | х | х                  | х | х | х                    | х | х | х                     | х                 | x | х       | х | x | х             | х |
| 11     | Germany        |   |              |   |   |              |            | х |              |              | x |                   |   | х |                    | х | x |                      | х | x |                       | х                 | x |         | х | x |               | х |
| 12     | Greece         |   |              |   | x |              |            | х |              |              | х |                   |   | х | х                  |   | x | х                    |   | × | х                     |                   | x | х       |   | х | х             |   |
| 13     | Hungary        | х |              |   | х |              |            | х |              | х            | х |                   | Х | х |                    | х | х |                      | х | х |                       | х                 | x |         |   | х |               | х |
| 14     | Ireland        |   |              |   |   |              |            |   |              |              |   |                   |   | х |                    |   | х |                      |   | х |                       |                   |   |         |   | х |               |   |
| 15     | Italy          |   |              |   |   | х            |            |   | х            |              | х | х                 |   | х | х                  |   | х | х                    |   | х | х                     |                   | х | х       |   | х | х             |   |
| 16     | Latvia         |   |              |   |   |              | х          |   |              | х            |   |                   | х |   |                    | х |   |                      | х |   |                       | х                 |   |         | х |   |               | х |
| 17     | Lithuania      |   |              |   |   |              |            |   |              |              |   |                   |   |   | х                  |   |   | х                    |   |   | х                     |                   |   | х       |   |   | х             |   |
| 18     | Luxemburg      |   |              |   |   |              |            |   |              |              |   |                   |   |   |                    | х |   |                      | х |   |                       | х                 |   |         | х |   |               | х |
| 19     | Malta          |   |              |   |   |              |            |   |              |              |   |                   |   |   |                    |   | х |                      |   |   |                       |                   |   |         |   | х |               |   |
| 20     | Netherlands    |   |              |   |   |              |            |   |              |              |   |                   |   |   |                    |   | х |                      |   | х |                       |                   |   |         |   | х |               |   |
| 21     | Norway         |   |              |   |   |              |            |   |              |              |   |                   |   |   |                    |   | х |                      |   | х |                       |                   | х |         |   | х |               |   |
| 22     | Poland         | х |              |   | х |              |            | х | х            |              |   |                   |   | х | х                  |   | х | х                    |   | х | х                     |                   | х | х       |   | х | х             |   |
| 23     | Portugal       |   |              |   |   |              |            |   |              | х            |   |                   |   | х |                    | х | × |                      | х | × |                       | х                 | x |         | х | x |               | х |
|        | Romania        |   |              |   |   |              |            | х |              |              | × |                   |   |   |                    |   | × |                      |   | × |                       |                   | x |         |   | х |               |   |
| 25     | Slovakia       |   |              |   |   |              |            | х |              |              |   |                   |   | х |                    |   | х |                      |   | х |                       |                   | х |         |   | х |               |   |
| 26     | Slovenia       |   |              |   |   |              |            | х |              | х            |   |                   |   | х |                    | х | х |                      | х | Х |                       | х                 | х |         | х | х |               | х |
|        | Spain          |   |              |   |   |              |            | * |              |              |   |                   |   | х |                    |   | х |                      |   | х |                       |                   | х |         |   | х |               |   |
| 28     | Sweden         |   |              |   |   | х            |            |   | х            |              |   | х                 |   |   | х                  |   |   | х                    |   |   | х                     |                   |   | х       |   |   | х             |   |
| 29     | United Kingdom |   | -            |   |   |              |            | х |              | *            | х |                   |   |   |                    |   | х |                      | * | х |                       | *                 | х |         | * | Х |               | * |

Table 1. Summary of incentives (S = subsidy; T = tax reduction; L = loans; \*only at local level – light colour)

| Air/Air Heat Pumps |   |   |       | Air/Water Heat Pumps |   |       | water/water + Ground                    | Source near rumps |     | Biomass |                                         |   | Solar Thermal |             |  |
|--------------------|---|---|-------|----------------------|---|-------|-----------------------------------------|-------------------|-----|---------|-----------------------------------------|---|---------------|-------------|--|
| S                  | Т | L | S     | Т                    | L | S     | Т                                       | L                 | S T |         |                                         | S | Т             | L           |  |
| х                  |   |   | х     |                      |   | х     |                                         |                   | х   |         | anarananananananananananananananananana | х |               | vouceauceau |  |
| Х                  | х | * | x x * |                      |   | x x * |                                         |                   | Х   | х       | *                                       | Х | х             | *           |  |
|                    | - | х |       |                      | х |       | 000000000000000000000000000000000000000 | х                 | *   | х       | х                                       |   | х             | Х           |  |
|                    |   |   |       |                      |   |       |                                         |                   |     |         |                                         |   |               | 0000000     |  |

<u>Source:</u> Analysis of the existing incentives in Europe for heating powered by fossil fuels and renewable sources. www.inforse.org/europe



### Easier said than done?

### Only For Air Handling Unit:

✓ 204,523 Units sold in EU in 2022



**How To Verify Compliance?** 



### Solution





# Third Party Certification













FREE AVAILABILITY ON-LINE

**Eurovent Certita Certification** website









## **Energy Label**





#### Reference parameters for energy classes

- → Air velocity
- → Heat recovery efficiency
- → Flow resistance (heat recovery)
- → Fan efficiency ratio



| 01.400          | All Units                | Units for full or pa<br>design winter te |                          |                             |  |  |
|-----------------|--------------------------|------------------------------------------|--------------------------|-----------------------------|--|--|
| CLASS           | Velocity                 | Heat recov                               | ery system               | Fan Efficiency Grade        |  |  |
|                 | v <sub>class</sub> [m/s] | η <sub>class</sub> [%]                   | Δp <sub>class</sub> [Pa] | NG <sub>ref-class</sub> [-] |  |  |
| A+ / A+ □ / A+↑ | 1.4                      | 83                                       | 250                      | 64                          |  |  |
| A/AG/A↑         | 1.6                      | 78                                       | 230                      | 62                          |  |  |
| B / B           | 1.8                      | 73                                       | 210                      | 60                          |  |  |
| C/CG/C↑         | 2.0                      | 68                                       | 190                      | 57                          |  |  |
| D / D⊊ / D↑     | 2.2                      | 63                                       | 170                      | 52                          |  |  |
| E / EĢ / E↑     |                          | No requirement                           |                          |                             |  |  |

Table 6: Table for energy efficiency calculations

The lowest classes E, E⊊ and E↑ have no requirements.



# **Energy Label**

### ISO 16890: a great milestone

#### A first step to give the decision power to End-Riskers





#### II.2.2. Energy Efficiency Classification and Labelling

Table 1: Energy efficiency class limits for each filter class according to EN ISO 16890:2016 measured at 0.944 m³/s.

| Mx = 200 g (AC Fine) AEC in kWh/y FOR ePM1 (ePM₁ and ePM₁,min ≥ 50%) |                                      |            |           |                         |                          |       |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------|------------|-----------|-------------------------|--------------------------|-------|--|--|--|--|
|                                                                      | A+                                   | Α          | В         | С                       | D                        | E     |  |  |  |  |
| 50&55%                                                               | 800                                  | 900        | 1050      | 1400                    | 2000                     | >2000 |  |  |  |  |
| 60&65%                                                               | 850                                  | 950        | 1100      | 1450                    | 2050                     | >2050 |  |  |  |  |
| 70&75%                                                               | 950                                  | 1100       | 1250      | 1550                    | 2150                     | >2150 |  |  |  |  |
| 80&85%                                                               | 1050                                 | 1250       | 1450      | 1800                    | 2400                     | >2400 |  |  |  |  |
| >90%                                                                 | 1200                                 | 1400       | 1550      | 1900                    | 2500                     | >2500 |  |  |  |  |
| M <sub>X</sub> = 250 g (AC Fine)                                     | AEC                                  | in kWh/y F | OR ePM2.5 | (ePM <sub>2.5</sub> and | ePM <sub>2.5,min</sub> ≥ | 50%)  |  |  |  |  |
|                                                                      | A+                                   | Α          | В         | С                       | D                        | E     |  |  |  |  |
| 50&55%                                                               | 700                                  | 800        | 950       | 1300                    | 1900                     | >1900 |  |  |  |  |
| 60&65%                                                               | 750                                  | 850        | 1000      | 1350                    | 1950                     | >1950 |  |  |  |  |
| 70&75%                                                               | 800                                  | 900        | 1050      | 1400                    | 2000                     | >2000 |  |  |  |  |
| 80&85%                                                               | 900                                  | 1000       | 1200      | 1500                    | 2100                     | >2100 |  |  |  |  |
| >90%                                                                 | 1000                                 | 1100       | 1300      | 1600                    | 2200                     | >2200 |  |  |  |  |
| M <sub>X</sub> = 400 g (AC Fine)                                     | AEC in kWh/y FOR ePM10 (ePM₁0 ≥ 50%) |            |           |                         |                          |       |  |  |  |  |
|                                                                      | A+                                   | Α          | В         | С                       | D                        | E     |  |  |  |  |
| 50&55%                                                               | 450                                  | 550        | 650       | 750                     | 1100                     | >1100 |  |  |  |  |
| 60&65%                                                               | 500                                  | 600        | 700       | 850                     | 1200                     | >1200 |  |  |  |  |
| 70&75%                                                               | 600                                  | 700        | 800       | 900                     | 1300                     | >1300 |  |  |  |  |
| 80&85%                                                               | 700                                  | 800        | 900       | 1000                    | 1400                     | >1400 |  |  |  |  |
| >90%                                                                 | 800                                  | 900        | 1050      | 1400                    | 1500                     | >1500 |  |  |  |  |



**Environmental Challenges** 









HOW IS THE

AIR QUALITY IN YOUR HOME?

All the requirements are listed in the Appendix H of the AHU TCR, they are related to the following topics:

#### General

- Planning
- Manufacture
- Shipment

#### **Unit Housing**

- Metallic Materials
- Non-Metallic Materials
- General AHU Arrangement
- Inner Casing Surface
- Inspection,Maintenance andCleaning
- Filter Maintenance

#### Air Treatment

- Filter
- Cooling and Heating Coil
- Humidifier
- Dehumidifier
- Heat Recovery System
- Fans
- Silencer



|                                                          | Offices, schools,<br>hotels, retail<br>Level 1 ★☆☆ | Hospitals<br>Level 2 ★★☆ | Pharmaceutical,<br>food processes,<br>white rooms<br>Level 3 ★★★ |  |  |
|----------------------------------------------------------|----------------------------------------------------|--------------------------|------------------------------------------------------------------|--|--|
| Corrosivity class for metallic materials                 | At lea                                             | At least C4              |                                                                  |  |  |
| Thermal Bridging class                                   | At lea                                             | At least TB3             |                                                                  |  |  |
| Casing Air leakage Class                                 | At least L2                                        | (M)*& L2(R)*             | At least L1 (M) & L1(R)                                          |  |  |
| Water Drainage from pans, condense trays and water tanks |                                                    | 95%                      |                                                                  |  |  |
| Filters class (supply side)                              | Epm1                                               | . 50%                    | Epm1 85%                                                         |  |  |
| Number of filter on supply side                          | 1                                                  | 2                        | 2                                                                |  |  |
| Fin thickness                                            | 0.10 mm                                            | 0.12                     | mm                                                               |  |  |
| Minimum distance between fins (cooler)                   | 2.5                                                | mm                       | 3.0 mm                                                           |  |  |
| Minimum distance between fins (heating)                  | 2.0                                                | mm 2.5 mm                |                                                                  |  |  |

Specifications are subject to change without notice.



<sup>\*</sup> M= model box, R= real unit

The Hygienic option is a certification by range proposing 3 levels of certification representing by stars





### Value of Certification and Market Surveillance

#### **AHU Energy label**







### Seek the Value and not the price!!!

| Position                               | I.M.    | Energy class of the air handling unit |        |        |  |  |  |
|----------------------------------------|---------|---------------------------------------|--------|--------|--|--|--|
|                                        |         | A+                                    | Α      | С      |  |  |  |
| Electric Energy (fans)                 | kWh/yr. | 33,285                                | 36,368 | 39,778 |  |  |  |
| Heating Energy (heating coil)          | kWh/yr. | 168                                   | 1,931  | 8,098  |  |  |  |
| Cooling Energy (cooling coil)          | kWh/yr. | 9,826                                 | 10,138 | 10,690 |  |  |  |
| Total energy cost                      | € / yr. | 8978                                  | 10138  | 10690  |  |  |  |
| Unit Cost difference to class A+       | € / yr. | -                                     | 900    | 2161   |  |  |  |
| Difference after 15* years to A+ class | €       | -                                     | 13,508 | 32,428 |  |  |  |

Prices per kWh. Electricity 0.2517 €/kWh, Gas 0,06 €/kWh (based on a SEER chiller efficiency)

HRS effic. adopted 85.5% for A+ class, 80.2% for A class & 73% for C class, respectively.

LCC calculations courtesy of FläktGroup





Airflow rate (SUP/EHA): 10,000 m<sup>3</sup>/h

Ext. Static Pres. (S/E): 400/300 Pa

Supply (S/W): 20°C

Exhaust (W): 22°C

Exhaust (S): 24°C

Rotary Heat Recovery Wheel, Water heater & cooling coils, Filter ePM1 70% (SUP), ePM10 50% (ETA) +

Fans (SUP+ETA)

Location: London, 24/7 operation

18

<sup>\*</sup> Present values over 15 years with a rate of return @3%.

### Case study



Declared temperature 15°C

Actual temperature 13°C

Excessive heat consumption to heating up by an extra 2K



### Case Study



#### Excess fan power consumption (80 Pa deviation):

$$P = \frac{\Delta P_t \times q}{\eta} \times 10^{-3} kW = \frac{2.78 \times 80}{0.6} \times 10^{-3} = 0.37 \ kW$$



#### **Excess annual electricity consumption (supply+exhaust)**

$$E = 2 \times 0.37 \ kW \times 8,760 \ h \approx 6,480 \ kWh$$



- Hotel (350 beds)
- ➤ The air handling unit supplies (hygienic) air to the hotel rooms
- Supply/exhaust temperature: 20°C (winter)
- Air flow rate: 10,000 m3/h (2.78 m3/s)
- Constant flow system (without DCV)
- > 24/7 operation (8760 h/year)

### Case Study



#### **Seasonal Heat Consumption of the heater:**

$$Q = q_m \times \{t_{ex} - [t_{ph} + \eta_t \times (t_{ex} - t_{ph})]\} \times h_{year}$$

➢ For 78% efficiency

$$Q = 72,200 \, kWh/y$$

> For 72% efficiency

$$Q = 98,300 \, kWh/y$$

Excessive Heat
Consumption
≈26,100 kWh (+27%)





- > Hotel (350 beds)
- ➤ The air handling unit supplies (hygienic) air to the hotel rooms
- Supply/exhaust temperature: 20°C (winter)
- Air flow rate: 10,000 m3/h (2.78 m3/s)
- Constant flow system (without DCV)
- 24/7 operation (8760 h/year)

## Case Study



#### **Excessive cost of electricity:**

$$6,480 \, kWh \times 0.2173$$
  $\in /_{kWh} = 1408$   $\in$ 





#### **Excessive cost of heat (natural gas):**

 $26,100kWh \times 0,06 \in /kWh = 1566 \in$ 

Excessive Cost 2,974 €/ year



- Hotel (350 beds)
- ➤ The air handling unit supplies (hygienic) air to the hotel rooms
- Supply/exhaust temperature: 20°C (winter)
- Air flow rate: 10,000 m3/h (2.78 m3/s)
- Constant flow system (without DCV)
- > 24/7 operation (8760 h/year)

### Summary

- ➤ Improving the efficiency of HVAC-R products is crucial for a more sustainable future
- ➤ Incentives and Regulations are necessary to influence the market
- ➤ Third-party certification is a valuable tool for market surveillance and product performance control
- Product certification is an effective solution for incentivization
- Certified products tend to increase the percentage of high-performance products in the market and unburden governments





THANK 0 & A

@ GRAND HYATT ATHENS HOTEL

NOVEMBER 22-23, 2024

@ 9:00-18:00

**NAME: Ali NOUR EDDINE** 

**EMAIL:** aa.nour-eddine@eurovent-

certification.com

**GOLD SPONSOR** 













































**SPONSORS** 















