

09:00-18:00 | @ DIVANI CARAVEL HOTEL, ATHENS

COMMUNICATION SPONSORS

SPONSORS

GOLD SPONSOR

CONSULTANT ENGINEER IN GRAND ALPHA - SUSTAINABLE ENGINEERING & CONSULTING

«COMMISSIONING AND PERFORMANCE VERIFICATION IN HYDRONIC HVAC

SATURDAY

09:00-18:00 | @ DIVANI CARAVEL HOTEL, ATHENS

COMMUNICATION SPONSORS

NOVEMBER 15, 2025

GOLD SPONSOR SPONSORS

УПО ТНИ АІГІДА **ТЕ**Е

Commissioning and Performance Verification in Hydronic HVAC Systems: Pathways to Energy Optimization

Introduction – The Role of Commissioning in Energy

Optimization

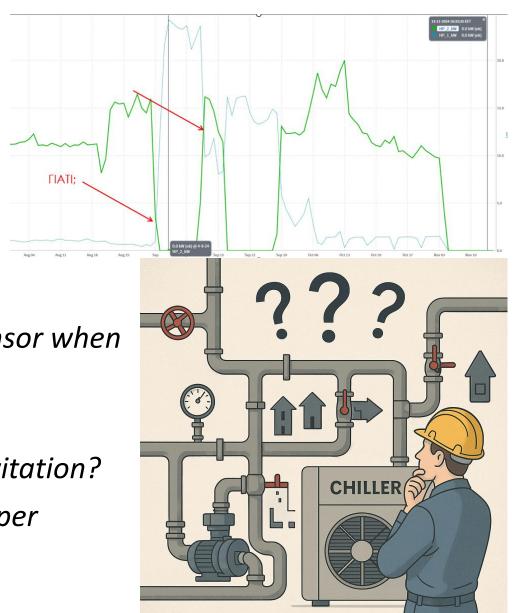
 In recent years, energy efficiency and consumption reduction have become key priorities.

- In Greece, 15–20 years ago, HVAC design aimed mainly to be functionally— not to measure real efficiency.
- Older chiller brochures rarely mentioned EER or COP (only maximum cooling and absorbed power).
- Climate change and the energy crisis accelerated the need for high efficiency.COVID-19 reminded us that Indoor Environmental Quality (IEQ) is equally essential.
- The pursuit of efficiency led to more complex HVAC systems

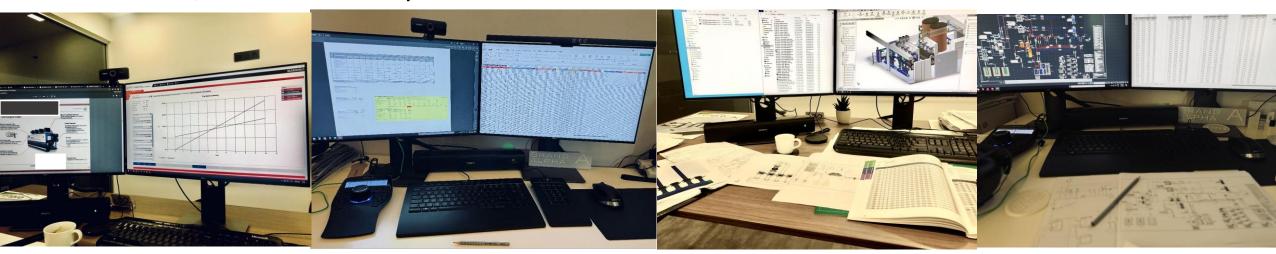
 variable flow, advanced controls, and hybrid hydronic loops.

COEFFICIENT OF PERFORMANCE (COP) In mathematical terms, the coefficient of performance is the output energy divided by input energy COP = OUTPUT ENERGY INPUT ENERGY

Why Commissioning Matters?

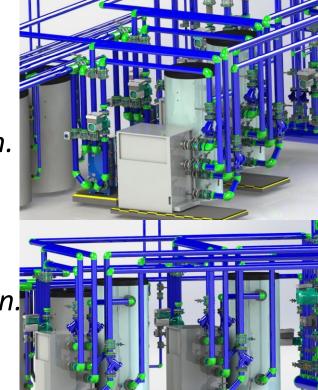

- Commissioning bridges the gap between design targets and real operation.
- It ensures systems are installed, tested, and fine-tuned to achieve expected performance.
- As defined by ASHRAE Guideline 0: "A quality-oriented process for achieving, verifying, and documenting that the performance of facilities meets defined objectives and criteria."

Without Commissioning?


- Who will ensure the optimal pump operation?
- What if we have overflow in a Chiller in terms of efficiency?
- How crucial is the Low-DT syndrome?
- Is it the right measurement of a Temperature sensor when we have less flow?
- If the sensor are in wrong position?
- Who will ensure that pumps operate without cavitation?
- Are the sensors and other instruments in the proper position?
- Is the by-pass branch right constructed?

The Commissioning Process Framework

- **Project stages:** → Pre-design → Design → Construction → Acceptance → Operations
- **Commissioning Authority** (CxA):Leads and coordinates all verification and testing activities.
- Key documentation: Owner's Project Requirements (OPR), Basis of Design (BOD), Commissioning Plan, and Checklists.
- **Performance verification:** Conducted through functional testing, trend logs, balancing results, and detailed reports.



Hydronic HVAC Systems: Characteristics and Challenges

Hydronic systems offer high efficiency and flexibility — but only when properly balanced and controlled.

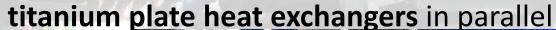
Without commissioning, several issues can compromise performance:

- Poor hydraulic balance across loops and terminals.
- Unnecessary recirculation and excessive pump operation.
- Low ΔT syndrome, reducing chiller or boiler efficiency.
- Incorrect sensor readings due to low circulation or misplacement.
- Oversized equipment and unstable partial-load operation.
- Faulty or uncalibrated sensors and incorrect control tuning.
- The result: energy losses, reduced comfort, and poor $COP/\Delta T$ performance.

Key reference: ASHRAE Standard 202.

Performance Verification and Optimization

- · Commissioning introduces a data-driven method to verify real operation.
- Key actions:
 - Measure flow rates, temperatures, and ΔT across loops.
 - Validate sensor accuracy and calibration.
 - Analyze trend logs to detect inefficiencies or cycling issues.
 - Optimize control logic and balancing for stable, efficient operation.
 - Verified performance ensures hydronic systems operate as designed, maximizing both efficiency and comfort.



CASE STUDY Commissioning in a Geothermal HVAC Hydronic Plant

Central HVAC and Domestic Hot Water System for a 250 room Resort Hotel.

- Designed to provide cooling, heating, and DHW.
- Based on two geothermal multifunctional heat pumps: 520 kWth total Cc
- A water-cooled high-temperature booster heat pump: 250 kWth .

• Open-loop geothermal system of 2 production wells (up to 100 m³/h) & 2

Key reference: ASHRAE Guideline 1.1 – HVAC&R Technical Requirements for the Commissioning Process.

Hydraulic Layout

The installation includes multiple closed hydraulic circuits:

- Heat Exchanger Geothermal HPs loops: 2 circuits
- Primary Geothermal HPs (cold & hot): 4 circuits.
- Booster HP: Source side, User side (primary & secondary): 3 circuits.
- Secondary HVAC distribution: 9 pumps.

Circuits equipped with:

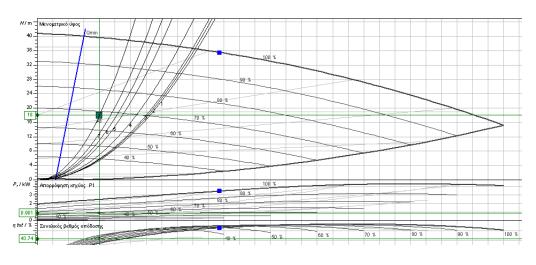
- Analog and On/Off motorized valves for isolation, bypass, and flow regulation.
- Pressure and temperature sensors at key points.

11

15 NOVEMBER 2025 ENERGY IN BUILDINGS 2025

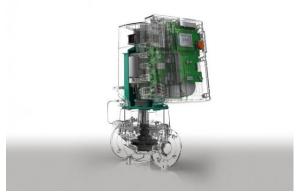
CASE STUDY CASE STUDY CASE STUDY CASE STUDY CASE STUDY COmmissioning Strategy: A Proactive Approach

- The commissioning strategy was embedded before the project design.
- Commissioning was not limited to start-up testing it defined requirements,
 opportunities, and design constraints from the proposal stage.
- Early inclusion allowed optimization of design logic, system layout, and client expectations.
- Goal: Integrate commissioning as a design-driving process, not a post-installation activity.



Design Phase Insights

- Design initiated prior to dismantling the existing system.
- Hydraulic curves of each circuit were measured and plotted.
- Ensured pump homogeneity to minimize spare parts and simplify operation.
- Result: Reduced installation cost and improved system maintainability.

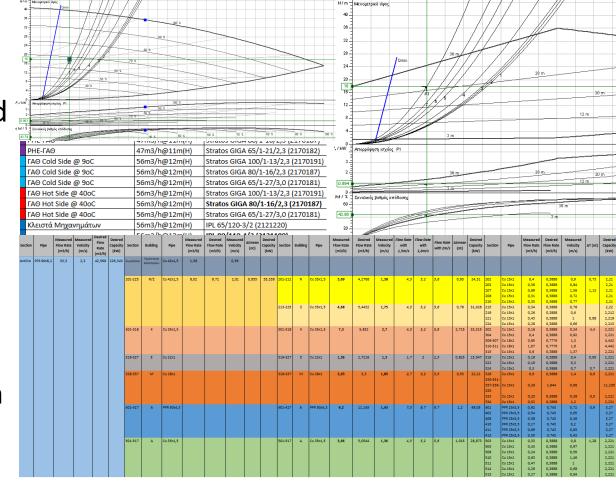


Design Requirements Driven by Commissioning

- **SCADA-BEMS integration** with extensive sensor network (flow, temperature, pressure).
- All equipment designed for full controllability:
 - Inverter-driven pumps
 - Analogue motorized valves
 - Data-ready controllers.
- Enabled standardization and modularity across all hydraulic circuits.

CASE STUL

1. Commissioning Execution


- Before dismantling, **flow measurements** were taken using a **clamp-on ultrasonic flowmeter**.
- Defined **10–14 operational points** per circuit (flow, Hz, Amps, rpm).
- Determined target setpoints from real thermal loads and demand profiles.
- Searched for single pump models capable of covering all 9 circuits to ensure uniformity.
- Outcome: Full operational map of the hydraulic system before construction began.

CASE STUDY 2. Detailed Flow Design and Pump Selection

- Conducted a **detailed flow design** for every new primary hydraulic branch.
- Determined the exact operational points for each circuit based on thermal load and head loss calculations.
- Identified pump models capable of covering all eight remaining flow points.
- Selected a single standardized pump model to optimize spare part logistics, maintenance, and installation cost.
- Outcome: Complete flow characterization of each primary circuit with unified equipment specification.

16

15 NOVEMBER 2025 ENERGY IN BUILDINGS 2025

CASE STUD 1 3. Commissioning Preparation – Geothermal Wells

- Commissioning began with geothermal well calibration.
- Defined maximum target flow using hydraulic and thermal design parameters.
- Operated each production well individually and in parallel to simulate full-load conditions.
- Measured flow using a clamp-on ultrasonic flowmeter to determine inverter frequency corresponding to nominal well flow.
- Established this frequency as the reference for **automated SCADA control**.

15 NOVEMBER 2025 ENERGY IN BUILDINGS 2025 17

CASE 31 4. Source-Side Circuits – PHEs-> GHPs

- Using manufacturer print-outs, recorded the required design flow under nominal temperature conditions.
- Verified actual flow via **clamp-on measurements** and set nominal points for each pump.
- Measured and defined **minimum allowable flow** for safe heat pump operation per manufacturer data.
- Programmed minimum flow limits into the **SCADA system** for automatic protection.
- Confirmed flow stability during start-up and under-load operation of geothermal heat pumps.
- Outcome: Full functional validation of the geothermal source-side hydraulic system.

15 NOVEMBER 2025 ENERGY IN BUILDINGS 2025 18

5. User-Side Circuits of GHPs

- Verified nominal and design flow from heat pump manufacturer data.
- Measured actual flow rates and adjusted inverter frequencies to match design conditions.
- Conducted **live validation under operating load** to confirm thermal stability.
- Tested 3-way motorized valves for continuous analog modulation and bypass flow control.
- Using the flowmeter, confirmed that during the modulation range (thermoregulation), the primary flow remained within design limits.
- **Result:** Balanced and dynamically regulated primary circuits ensuring steady ΔT and optimal COP.

19

15 NOVEMBER 2025 ENERGY IN BUILDINGS 2025

6. Secondary HVAC Circuits

- Based on defined design points, operated secondary pumps in parallel at representative speeds per manufacturer curves.
- Measured actual flow and established the nominal operating point for each pump.
- Defined both maximum and minimum operating limits through measurements at the most distant branches.
- Implemented in SCADA a dynamic ΔT-based control logic using PID regulation for adaptive speed control.
- Ensured consistent differential temperature and efficient pump operation across variable loads.
- Outcome: Stable hydronic operation with minimized pumping energy and controlled ΔT variation.

20

15 NOVEMBER 2025 ENERGY IN BUILDINGS 2025

7. DHW Preparation Circuit

- Verified flow requirements for the **Booster Heat Pump** according to factory specifications.
- Measured and adjusted flow in the secondary open
 DHW loop (heat exchanger circuit).
- Defined **minimum desired flow** to maintain accurate average temperature data for control algorithms.
- Ensured proper sensor feedback for the system's loadbased decision-making logic.
- Result: Optimized DHW heating performance and accurate feedback control through verified flow conditions.

15 NOVEMBER 2025 ENERGY IN BUILDINGS 2025 21

CASE STUDY

8. Domestic Hot Water Recirculation

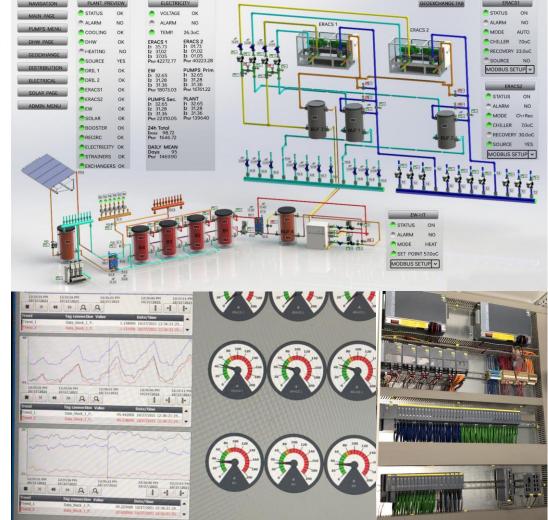
- Conducted **flow measurements** in the domestic hot water **recirculation loop**.
- Selected a single pump model for all recirculation circuits to standardize maintenance and replacement.
- Defined **minimum operating flow** for each pump using clamp-on flowmeter validation.
- Established PID temperature-return control logic in SCADA to maintain consistent DHW return temperatures.
- Outcome: Efficient recirculation control, reduced standby energy losses, and simplified spare part management.

22

15 NOVEMBER 2025 ENERGY IN BUILDINGS 2025

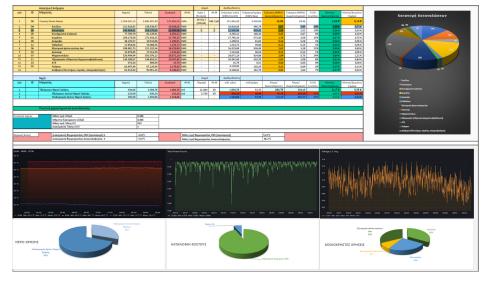
CASE STUDY

9. Synchronization of Heat Pump Operation with Real Thermal Load


- At this stage, we analyzed the **start-up and synchronization requirements** of the two geothermal heat pumps.
- Developed operational efficiency scenarios to identify the optimal configuration:
 - a. Parallel operation: HP1 up to 50%, HP2 up to 50%, HP1 up to 100%, HP2 up to 100%.
 - **b.** Comparative assessment of **pumping energy cost** versus **HP efficiency**.
- Field measurements were performed for each scenario using SCADA and energy metering.

9. Synchronization of Heat Pump Operation with Real Thermal Load

- Analysis led to the creation of a control algorithm that activates the second HP only when load exceeds 70% of a single unit's capacity.
- Above this threshold, the combined COP surpasses the critical point where total energy (HP + pumping) becomes more efficient.
- The algorithm was implemented in SCADA, allowing automatic load-based synchronization and optimal energy balance between compressor and pump operation.



CASE STUDY

Final Results and System Outcomes

- Verified in-spec operation of all geothermal and booster heat pumps.
- Ensured adequate flow across all circuits and terminal units (fan coils).
- Achieved efficient DHW heating and reliable sensor feedback for control logic.
- Eliminated Low-ΔT Syndrome
- Reduced pumping energy consumption by >31%, approximately 42,73 MWh/year ≈ 8.546,40€/year.
- With only two spare pumps, any of the 17 total circuits can be replaced immediately in case of failure.

	Pre-Commissionig	After
Primary Pumps (A)	25,88	16,65
Secondary Pumps (A)	38,35	27,66
Total (Amps)	64,23	44,31
kWh/y	137.772,00	95.040,00
Cost	27.554,40 €	19.008,00€
Recuction	(mean)	31%
Energy Savings	(annual)	42.732,00
Cost Reduction	(annual)	8.546,40 €

15 NOVEMBER 2025 ENERGY IN BUILDINGS 2025 25

ASHRAE & COMMISSIONING

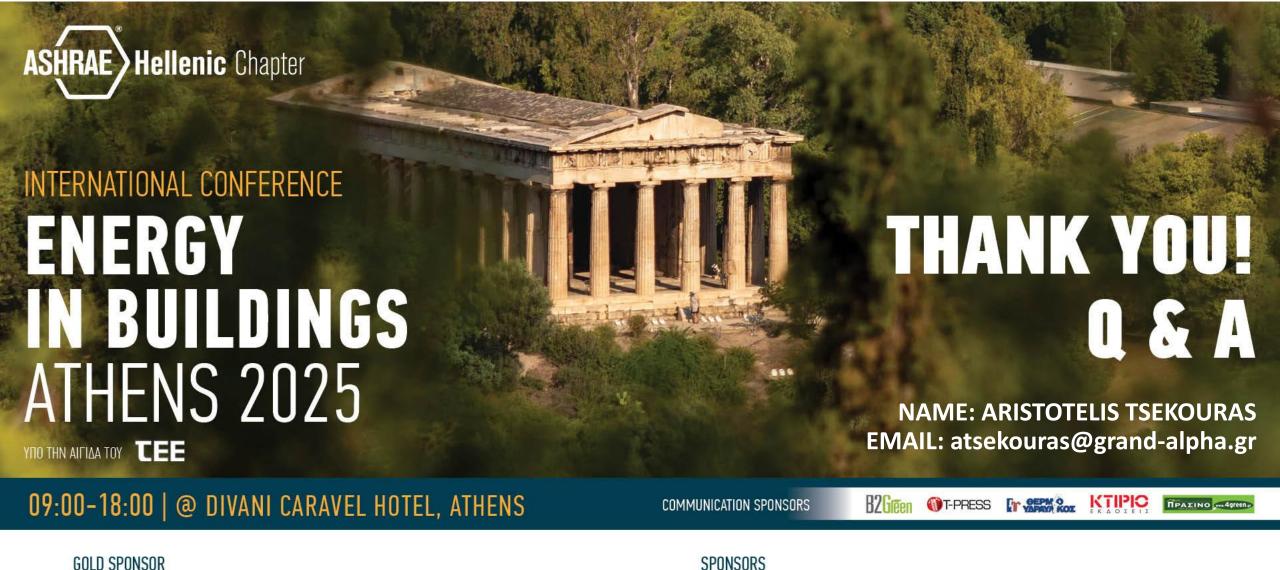
 ASHRAE Standard 202 – Commissioning Process for Buildings and Systems,

• ASHRAE Guideline 0.2 – Commissioning of Existing Buildings

• ASHRAE Guideline 1.1 – HVAC&R Technical Requirements for the Commissioning Process

• ASHRAE Standard 90.1-2019, Section 4 – Enhanced Commissioning Requirements

• ASHRAE BPA (2014) – "Commissioning: The Foundation of Building Performance."


Commissioning: ASHRAE
Guideline 0 and Standard 202

for Buildings and Systems

Commissioning Process for Buildings and Systems

26

GOLD SPONSOR

ARISTON

