

DEDICATED VENTILATION APPLICATIONS

INDUSTRIAL - KITCHEN - SMOKE CONTROL - FILTERS

ILIANA GEORGAKAKOU nior Mechanical Engineer at LDK Consultants "ASHRAE Design Guide for Commercial Kitchen Ventilation Design Approach and Recommendations'

REINER KELCH reichsleiter / Director Systems and Applications Systemair GmbH Germany "Effect of new published standard 12101-6 on practical implementation"

IOANNIS TZOURALAS Senior Mechanical Engineer – Consultant MEP Installations 'HVAC Systems for Cleanrooms (Pharma)"

WEDNESDAY 11/10/2023 @17:00-21:00

NEW VENUE! @GRAND HYATT, ATHENS

GOLD SPONSORS

SPONSORS

DEDICATED VENTILATION APPLICATIONS

INDUSTRIAL - KITCHEN - SMOKE CONTROL - FILTERS

ILIANA GEORGAKAKOU "ASHRAE Design Guide for Commercial Kitchen Ventilation Design Approach and Recommendations'

REINER KELCH iter / Director Systems and Applications Systemair GmbH Germany "Effect of new published standard 12101-6 on practical implementation"

IOANNIS TZOURALAS Senior Mechanical Engineer – Consultant MEP Installations 'HVAC Systems for Cleanrooms (Pharma)"

WEDNESDAY 11/10/2023 @17:00-21:00

NEW VENUE! @GRAND HYATT, ATHENS

ASHRAE Design Guide for Commercial Kitchen Ventilation

Design Approach and Recommendations

Contents

- Importance of Commercial Kitchen Ventilation (CKV) design
- Codes and standards
- Key parameters
- Load Calculations
- Exhaust air
- Supply air
- System design recommendations
- Case study
- Energy efficiency

Why CKV design is important

- CKV is a rising industry in Greece
 - malls with tenant restaurants
 - high standard hotels with in-house kitchens
 - new and refurbished restaurants
 - haute cuisine
- Design optimization for
 - health, comfort and safety in a kitchen area (IEQ)
 - treating emissions to outdoors (grease particles and odours)
 - energy efficiency
 - sustainability

Codes and Standards

- ANSI/ASHRAE Standard 154, Ventilation for Commercial Cooking Operation
- ASHRAE Handbook—HVAC Applications, Chapter 34, "Kitchen Ventilation"
- ASHRAE Design Guide for Commercial Kitchen Ventilation
- ANSI/ASHRAE/IES Standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings
- ANSI/ASHRAE Standard 62.1, Ventilation and Acceptable Indoor Air Quality
- ASHRAE Handbook—Fundamentals, Chapter 18, "Nonresidential Cooling and Heating Load Calculations"
- Other international standards (NFPA, UL, ASTM,ICC etc)

TC 5.10 KITCHEN VENTILATION

ASHRAE'S First Guide Bringing Together Decades of CKV Research!

Identifying key parameters

- Location and interaction with neighbors
- Type of kitchen/restaurant (fast-food, full service etc)
- Types of food being prepared
- Hours of operation
- Occupancy
- Ventilation air & exhaust airflows for hoods
- Comfort and safety
- Life-cycle costs
- Codes and standards compliance
- Testing, adjusting, and balancing (TAB) and commissioning

Manufacturer requirements

Air Balance

Identifying CKV systems

Figure 7.3 ASHRAE Design Guide for Commercial Kitchen Ventilation

Identifying hood style

Figure 4 ASHRAE Handbook—HVAC Applications, Ch.34

Load Calculations (1/2)

Design Parameters

- Typical parameters (persons, lighting etc)
- Outdoor air
- Heat gains from both hooded and unhooded equipment (manufacturer's specifications / ASHRAE Handbook Fundamentals ch.18)
- Indoor temperature (24°C / special conditions as per supplier)
- Humidity 40%-60%

Load Calculations (2/2)

Design considerations

- Zoning (dining, kitchen) and subzoning (washing, cooking, storage etc)
- Appliances under hood do not produce sensible/latent heat gains but radiant
- Hood design and configuration for optimal exhaust
- Simultaneous coefficient

Table 7.3 Recommended Values for Simultaneous Coefficient

Building Type	Kitchen Type Simultaneous Coefficient (KSIM) Range		
Hotel	0.6–0.8		
Hospital	0.5-0.7		
Cafeteria	0.5-0.7		
School	0.6-0.8		
Restaurant	0.6-0.8		
Industrial	0.6-0.8		

Table 7.3 ASHRAE Design Guide for Commercial Kitchen Ventilation

Exhaust air (1/3)

Airflow =L/s per linear m x linear hood length in m (L/s)

Hood Type

- Type I for grease emissions, vapor and smoke
- Type II for steam emissions or convective heat

Duty (ASHRAE Std 154 Table 1):

- Light (oven)
- Medium (fryer)
- Heavy (boiler, wok)
- Extra heavy (wood-fired oven, charcoal)

Exhaust air (2/3)

Type I Hoods

- **❖** Suggested typical airflow
- Wall mounted light duty 150-200 L/s per linear m
- Single island heavy duty 300- 600 L/s per linear m
- Double island heavy duty 250-400 L/s per linear m (per side)
- **❖** ASHRAE Standards apply to listed hoods
- ❖ Airflow to be confirmed by equipment/hood manufacturer

Fig 3.6 ASHRAE Design Guide for Commercial Kitchen Ventilation

Exhaust air (3/3)

Type II Hoods

❖ Suggested min airflow

- Wall mounted light duty 310 L/s per linear m
- Wall mounted medium duty 465 L/s per linear m
- Single island medium duty 775 L/s per linear m
- ❖ Min requirement 155 L/s/m

Fig 3.2 ASHRAE Design Guide for Commercial Kitchen Ventilation

Supply air (1/2)

Make up Air Units (MAU)

- 100% fresh air
- air volume less than exhaust
- velocity 0.381m/s
- tied to exhaust systems
- recommended T_{muaair} to match T_{space}

Rooftop units (RTU)

- fresh air (~25%) & recirculation
- usually supplement system

Fig 7.4 ASHRAE Design Guide for Commercial Kitchen Ventilation

Supply air (2/2)

DOAS

- high air volume (air conditioning dehumidification)
- recirculation capability
- even distribution of air
- tied to exhaust systems & other controls

Transfer air

- HVAC system of an adjacent area
- wall openings, grilles or transfer duct above ceiling
- air without contaminants/odors
- velocity 0.254m/s

Fig 7.5 & 7.3 ASHRAE Design Guide for Commercial Kitchen Ventilation

System design recommendations

Ducts of Type I and Type II separated

Duct velocity: 7.5-9m/s (min 2.5 m/s - max 12.7m/s)

St. pressure calculation to consider all parts and equipment

Distance of kitchen exhaust:

- 5m from fresh air inlet for non grease hoods
- 10m from fresh air inlet for grease hoods
- 3m from property line

Fig 4.21 ASHRAE Design Guide for Commercial Kitchen Ventilation

CKV case study

Fig 7.7 ASHRAE Design Guide for Commercial Kitchen Ventilation

CKV case study

Fig A-2 ASHRAE STD154

Energy efficiency

Demand Controlled Kitchen Ventilation

Transfer air/ treatment of makeup air

Energy recovery

Energy Efficiency Measures	90.1	IgCC/189.1	Title 24
Applies when kitchen has an airflow greater than X	X = 5000 cfm (2360 L/s)	X = 2000 cfm (950 L/s)	X = 5000 cfm (2360 L/s)
Transfer air	At least 50% of replacement air	At least 50% of replacement air	At least 50% of replacement air
DCKV	Installed on 75% of exhaust air	Installed on 75% of exhaust air	Installed on 75% of exhaust air
Energy recovery devices	An energy recovery ratio not less than 40% on at least 50% of the exhaust airflow	An energy recovery ratio not less than 40% on at least 50% of the exhaust airflow	An energy recovery ratio not less than 40% on at least 50% of the exhaust airflow
At least 75% of makeup air must met these criteria	Not applicable	Not applicable	Be unheated or heated to no more than 60°F (15.6°C) Be uncooled or cooled without using mechanical cooling

Table 4.10 ASHRAE Design Guide for Commercial Kitchen Ventilation

DEDICATED VENTILATION APPLICATIONS

INDUSTRIAL - KITCHEN - SMOKE CONTROL - FILTERS

THANK YOU! / Q&A

NAME: Iliana Georgia Georgakakou

EMAIL: ilianageorgia@gmail.com

GOLD SPONSORS

SPONSORS

